Česky English
  1. T2:C4-80

    CAP conferences and seminars

    Due to coronavirus spread measures, all events are postponed. You will be informed about new term.

ABOUT THE CENTRE

Centre of Advanced Photovoltaics (CAP) was established in 2016 as the part of Department of electrotechnology by receiving the support from European Structural an Investment Funds and Czech Republic state budget.

CAP brings together top experts in the field of photovoltaics from the CTU in Prague and abroad. The unique connection between experts from the material engineering and architectural concepts brings many new opportunities to utilize photovoltaics.

By the support of the project CAP (CZ.02.1.01/0.0/0.0/15_003/0000464 Center advanced photovoltaics), the cornerstone for starting the center focused on linking basic and applied research in the field of photovoltaics was laid.

EVENTS & NEWS

26.10.2020

3rd Landsberg Seminar

21.10.2019

6th CAP Assembly

18.06.2019

prof. Sajeev John lecture

15.03.2019

2nd Landsberg Seminar

5.03.2019

5th CAP Assembly


RESEARCH THEMES

The mission of CAP is to link researchers from the field of materials, architects, builders and other potential users of photovoltaics. Research at the centre is focused both on basic research in the field of new technologies of PV cells as well as on the utilization of photovoltaics, and is organised around the following themes:

logowp1 Computational simulations and the design of low-dimensional materials for solar cells
Leader: prof. T. Polcar

Team is focused on bottom-up approach in design of novel materials/interfaces using advanced atomistic simulations. Two lines of research are envisaged: study of low dimensional materials and perovskite/oxide interface and optimization of an interface between organic−inorganic hybrid perovskite materials with oxide scaffolds to improve efficiency of a perovskite. Read more...

logowp2 High efficiency crystalline silicon solar cell technology
Leader: Assoc. prof. Mgr. J. Holovský

The research has one main long-term objective that is 25% efficient solar cell based on silicon passivated contacts technology, optimized for ½ sun irradiance and fabricated without use of any kind of chemical vapour or plasma deposition. Only wet chemistry passivation combined with multifunctional transparent oxide layers prepared by Pulsed Laser Deposition or RF Sputtering will be used. The idea of ½ sun optimization is supported by many arguments: 1) within the tandem, cells work only below ½ sun irradiance, 2) energy cost is high when sunshine is low, 3) capping PV modules to ½ of nominal power saves BOS cost and makes system more profitable, 4) reduced current allows for relaxed requirements for contacts. The 25% objective might not be reached by Si cell alone and so tandem with perovskite might be required. For this reason we study hybrid perovskite materials by advanced techniques such as FTPS and in terms of devices we reached 19% efficiency for mixed-halide technology.Read more...

logowp3 Study of transient phenomena with view to PV performance and degradation
Leader: doc. B. Rezek

The work is focused on microscopic studies of short-term and long-term transient phenomena in PV materials (WP1, WP2), structures, and devices (WP4). The research is also tightly linked to practical PV integration in buildings (WP5). Read more...

logowp4 Photonic light capture for high-efficiency low-cost solar cells
Leader: prof. T. Markvart

Photonic structures and photon management will be used to enhance the capture of sunlight. To this end, advanced forms of fluorescent collectors will be developed with the use of frequency management in molecular complexes, applying ideas from photosynthetic light harvesting. With the help of photonics, the resulting structures will efficiently trap and guide both the incident and emitted light. The aim is to separate light capture from charge separation in a device where photonics serves as a tool to attaining high-efficiency at low cost, in a compact next-generation solar cell. The work will build on collaboration between the Centre for Advanced Photovoltaics in Prague and the Solar Energy Laboratory at the University of Southampton, UK (see http://www.southampton.ac.uk/engineering/research/groups/energy_technology/solar_energy.page)

logowp5 Solar power utilization concept in the built environment - Microgrids, Solar Architecture
Leader: Ing. P. Wolf

Team is focused on practical use of solar cells in respect to energy demands, human perception and urbanism. Cities and other urban areas will be completely transformed; building can be first passive and later even act as an active source of energy. This WP will investigate requirement and impact of such profound change. Read more...